Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
نویسنده
چکیده
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás–Riordan polynomials [Math. Ann. 323 (2002), 81–96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D ≥ 3 a modified Euler characteristic with D − 2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
منابع مشابه
Strong Tutte Functions of Matroids and Graphs
A strong Tutte function of matroids is a function of finite matroids which satisfies F ( M 1$M2) = F ( M 1 ) F ( M 2 ) and F ( M ) = aeF(M\e) + b e F ( M / e ) for e not a loop or coloop of M ,where ae , be are scalar parameters depending only on e . We classify strong Tutte functions of all matroids into seven types, generalizing Brylawski's classification of Tutte-Grothendieck invariants. One...
متن کاملInvariants of Colored Links and a Property of the Clebsch-gordan Coefficients of U Q (g)
Abstract. We show that multivariable colored link invariants are derived from the roots of unity representations of Uq(g). We propose a property of the Clebsch-Gordan coefficients of Uq(g), which is important for defining the invariants of colored links. For Uq(sl2) we explicitly prove the property, and then construct invariants of colored links and colored ribbon graphs, which generalize the m...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملInvariants of Composite Networks Arising as a Tensor Product
We show how the results of Brylawski and Oxley [4] on the Tutte polynomial of a tensor product of graphs may be generalized to colored graphs and the Tutte polynomials introduced by Bollobás and Riordan [1]. This is a generalization of our earlier work on signed graphs with applications to knot theory. Our result makes the calculation of certain invariants of many composite networks easier, pro...
متن کاملOn the reconstruction of graph invariants
The reconstruction conjecture has remained open for simple undirected graphs since it was suggested in 1941 by Kelly and Ulam. In an attempt to prove the conjecture, many graph invariants have been shown to be reconstructible from the vertex-deleted deck, and in particular, some prominent graph polynomials. Among these are the Tutte polynomial, the chromatic polynomial and the characteristic po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016